

11

nn.

An Internet of Skills ... where Robotics meets AI and the **Tactile Internet**

Mischa Dohler

Fellow, IEEE & Royal Society of Arts Director, Centre for Telecom Research Chair Professor, King's College London Board of Directors, Worldsensing Editor-in-Chief, ETT & EAI IoT

IEEE ICC 2016, Plenary Keynote Kuala Lumpur, Malaysia, 26 May 2016

Internet of Skills "Human 4.0"

Yesterday's

Innovation & Standards:

network technologies, audio & video codecs

Proprietary Circuit-Switched Audio & Video Technologies Standardized Packet-Switched Internet, enabling Economy of Scale

Today's

Innovation & Standards:

network, intelligence, tactile codec

Proprietary (and expensive) Haptic-Edge Technologies

Standardized Tactile Internet, enabling Economy of Scale

Fundamental Shift

Haptics, *i.e.* the complete perception of form, position, surface texture, stiffness, friction, temperature, etc. =

Closed Loop Communications:

- 1,000-4,000 Hz sampling/packet rate
- very strict delay constraints (<10ms)
- lack of realism (can't feel)

Open Loop Communications:

- 5-200 Hz sampling per tactile point
- very relaxed delay constraints (ca 100ms)
- improved realism (but can't move)

© Prof Eckehard Steinbach, TU Munich

1) Ultra-Fast Networks (Tactile Internet)

2) Haptic Encoders (both kinestaethic & tactile)

3) Edge Artificial Intelligence (to beat light-limit)

Core Enablers of the "Internet of Skills"

Technology Components

Multi Service and Multi Tenancy based Network Slicing to cater for:

- service quality and performance Edg
- service-specific functionality
- adaptation to available infrastructure

Ultra-Fast Network

Unsolved or partially unsolved challenges to enable ultra-fast network:

- 1. sort out SLA capabilities over LE spectrum
- ^{2.} make device-to-device (D2D) work properly
- ^{3.} enable fully decoupled RAN architecture (e.g. DUDe)
- 4. full cellular functionality without core network
- 5. trade-off cloud-RAN & content clouds
- 6. keep an eye on net-neutrality

Ultra-Fast Network

Understanding (tactile) touch:

Thrish, King's

	Merkel cell	Ruffini ending	Meissner corpuscle	Pacinian corpuscle
Best stimulus	Pressure, edges, corner, points	Stretch	Lateral motion	High-frequency vibration
Example	Reading Braille	Holding large objects	Sensing Slippage of objects	Sensing texture
Frequency range (Hz)	0-100	/	1-300	5-1000
Best Frequency (Hz)	5	/	50	200

Haptic Encoders

Encoding (tactile) touch:

Eckehard Steinbach, TUM

Vibrotactile signals are similar to speech signals

Codec performance: 2.3 kbps at full perceptual transparancy

Encoding kinesthetic signals:

Perceptual haptic data reduction approach:

- exploits limits of human haptic perception
- packet rate reduction of up to 90% (no perceivable distortion)
- leads to a variable packet rate \rightarrow event-based sampling and communication

Unsolved or partially unsolved challenges to enable tactile + kinesthetic encoders:

- 1. haptic mean opinion score (h-MOS)
- ^{2.} trade-off & standards for joint tactile <u>and</u> kinesthetic
- ^{3.} trade-off studies for integration with other codecs
- ^{4.} adapting (below) audio codecs vs eg compressed sensing

Compression Method	Bit rate (Kps)	Framing size	MOS score
G.711 PCM	64	0.125	4.1
G.726 ADPCM	32	0.125	3.85
G.728 LD-CELP	16	0.625	3.61
G.729 CS-ACELP	8	10	3.92
G.729a CS-ACELP	8	10	3.7
G.723.1 MP-MLQ	6.3	30	3.9
G.723.1 ACELP	5.3	30	3.65

Haptic Encoders

Model-Mediated Teleoperation Systems:

Stable haptic interaction for delays 10ms ... 200ms

Model errors / updates lead to reduced transparency

© Prof Eckehard Steinbach, TU Munich

Unsolved or partially unsolved challenges to enable edge artificial intelligence (AI):

- environment modeling (geometry and physical properties)
- 2. stable force rendering on the master side
- 3. standardised database of environmental models
- 4. cloud placement of intelligence and functionalities
- quickly converging predictive-AI solutions (e.g. docitive systems)

Kinesthetic Master (Phantom Device, dozens of DoF)

Ericsson-King's 5G Tactile Internet Lab

King's or E/// Virtual Core Network (emulate delay)

Combined Haptic Data (raw or reduced)

King's Software Defined Radio (SDR) with minimal/outsourced complexity

King's SDN: Cloud-RAN & Edge-Cloud

King's SDN: Cloud-RAN & Edge-Cloud

Combined Haptic

Data (raw or reduced)

┿

Tactile Slave

(Glove One,

hundreds of DoF)

Kinesthetic Slave

(Phantom Robot,

dozens of DoF)

King's Software Defined Radio (SDR) with minimal/outsourced complexity

5G Tactile Internet Lab

Video available under https://www.youtube.com/watch?v= CwaGOQM3vGE

5G Tactile Internet Lab

Disrupting Health

Co-Design with Ali Hossaini (Gbps challenge)

Disrupting Arts

Video available under https://www.youtube.com/watch?v= LNxXSIRXTvg

The Tactile Internet will be an enabler for remote skillset delivery and thereby democratize labour and wealth globally. None of that would be possible without my colleagues & PhD students as well as our collaborators:

Gerhard Fettweis, TUD

Eckehard Steinbach, TUM

Toktam Mahmoodi, KCL

Peter Marshall, Ericsson

Maria

Lema,

KCL

Oliver Holland, KCL

Thrish Nanayakkara, KCL

Hamid Aghvami, KCL

Prof Prokar, KCL

Ali Hossaini, artist

Meryem Simsek, TUD

Frank Fitzek, TUD

Tactile Internet Standardisation

- IEEE ETC Tactile Internet Committee:
 - founded by TUD, KCL & many others
 - chaired by Meryem Simsek (TUD)

- IEEE 5G Tactile Internet WG:
 - founded by KCL, E///, TUD and others
 - chaired & largely made possible thanks to Oliver Holland (KCL)
 - IEEE standards portal opened, mailing list created
 - first meeting in Kuala Lumpur this week --- JOIN IN!

Internet of Things ---- MOOC

Sign up on for free with my next course starting 6 June 2016: https://www.futurelearn.com/courses/internet-of-things.

FREE ONLINE COURSE

The Internet of Things

Learn how IoT works, and how to create a successful product or company using it, with this free online course.

Join now – starts 6 Jun

Thanks ... and please follow me on ...

Supporting References:

[1] "Tactile internet: 5G and the Cloud on steroids," Engineering & Technology Magazine, March 2015.

[2] "Changing the world with tech – Part I & II" televised globally on CNBC (showing our 5G and Tactile Internet developments), 4 May 2016.

[3] G. Fettweis. The Opportunities of the Tactile Internet – And A Challenge For Future Electronics. [Online]. Available: http://www.lis.ei.tum.de/fileadmin/w00bdv/www/fpl2014/fettweis.pdf

[4] A. Aijaz, M. Dohler, et al, "Realizing The Tactile Internet: Haptic Communications over Next Generation 5G Cellular Networks," IEEE Wireless Communications (Magazine), in press.

[5] M. Simsek, A. Aijaz, M. Dohler, J. Sachs, G. Fettweis, "5G-Enabled Tactile Internet," IEEE JSAC, in press.

[6] F. Boccardi, J. Andrews, H. Elshaer, M. Dohler, S. Parkvall, P. Popovski, S. Singh, "Why to Decouple the Uplink and Downlink in Cellular Networks and How To Do It," IEEE Communications Magazine, in press.

[7] X. Xu, B. Cizmeci, C. Schuwerk, E. Steinbach, Model-mediated Teleoperation: Toward Stable and Transparent Teleoperation Systems, IEEE Access, vol. 4, pp. 425 - 449, January 2016.

[8] R. Chaudhari, C. Schuwerk, M. Danaei, E. Steinbach, Perceptual and Bitrate-scalable Coding of Haptic Surface Texture Signals, IEEE Journal of Selected Topics in Signal Processing (JSTSP), vol. 9, no. 3, April 2015.

[9] E. Steinbach, S. Hirche, M. Ernst, F. Brandi, R. Chaudhari, J. Kammerl, I. Vittorias, Haptic Communications, Proceedings of the IEEE, vol. 100, no. 4, pp. 937-956, April 2012.

[10] E. Steinbach, S. Hirche, J. Kammerl, I. Vittorias, R. Chaudhari, Haptic Data Compression and Communication for Telepresence and Teleaction, IEEE Signal Processing Magazine, vol. 28, no. 1, pp. 87-96, January 2011.